Rule-Based High-Level Situation Recognition from Incomplete Tracking Data
نویسندگان
چکیده
Fuzzy metric temporal logic (FMTL) and situation graph trees (SGTs) have been shown to be promising tools in high-level situation recognition. They generate semantic descriptions from numeric perceptual data. FMTL and SGTs allow for sophisticated and universally applicable rule-based expert systems. Dealing with incomplete data is still a challenging task for rule-based systems. The FMTL/SGT system is extended by interpolation and hallucination to become capable of incomplete data. Therefore, one analysis to the robustness of the FMTL/SGT system in situation recognition is removing parts of the ground truth input tracks. The recognition results are compared to ground truth for situations such as “load object into car”. The results show that the presented approach is robust against incomplete data. The contribution of this work is, first, an extension to the FMTL/SGT system to handle incomplete data via interpolation and hallucination, second, a knowledge base for recognizing vehicle-centered situations.
منابع مشابه
Applying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملLearning Individual Roles from Video in a Smart Home
This paper addresses learning and recognition of individual roles from video data in a smart home environment. The proposed approach is part of a framework for acquiring a high-level contextual model for human behaviour in an intelligent environment. The proposed methods for role learning and recognition are based on Bayesian models. The input is the targets and their properties generated and t...
متن کاملInvestigating the missing data effect on credit scoring rule based models: The case of an Iranian bank
Credit risk management is a process in which banks estimate probability of default (PD) for each loan applicant. Data sets of previous loan applicants are built by gathering their data, and these internal data sets are usually completed using external credit bureau’s data and finally used for estimating PD in banks. There is also a continuous interest for bank to use rule based classifiers to b...
متن کاملHandling Real-World Context Awareness, Uncertainty and Vagueness in Real-Time Human Activity Tracking and Recognition with a Fuzzy Ontology-Based Hybrid Method
Human activity recognition is a key task in ambient intelligence applications to achieve proper ambient assisted living. There has been remarkable progress in this domain, but some challenges still remain to obtain robust methods. Our goal in this work is to provide a system that allows the modeling and recognition of a set of complex activities in real life scenarios involving interaction with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012